Due to the highly interdisciplinary nature of FESSs, we survey different design approaches, choices of subsystems, and the effects on performance, cost, and applications. This review focuses on the state of the art of FESS technologies, especially those commissioned or. . Flywheel energy storage (FES) works by spinning a rotor (flywheel) and maintaining the energy in the system as rotational energy. When energy is extracted from the system, the flywheel's rotational speed is reduced as a consequence of the principle of conservation of energy; adding energy to the. . Battery Energy Storage Systems (BESS) represent a keystone in modern energy management, leveraging electrochemical reactions to store energy, typically in the form of lithium-ion or lead-acid batteries, and releasing it on demand [1]. This mechanism hinges on the principles of electrochemistry. . Flywheel Energy Storage Systems (FESS) rely on a mechanical working principle: An electric motor is used to spin a rotor of high inertia up to 20,000-50,000 rpm. Electrical energy is thus converted to kinetic energy for storage. For discharging, the motor acts as a generator, braking the rotor to. . There is noticeable progress in FESS, especially in utility, large-scale deployment for the electrical grid, and renewable energy applications. This paper gives a review of the recent developments in FESS technologies. The core technology is the rotor material, support bearing, and electromechanical control system. This chapter mainly introduces the main structure of the flywheel energy storage. . A flywheel energy storage system is a mechanical device used to store energy through rotational motion. When excess electricity is available, it is used to accelerate a flywheel to a very high speed. The energy is stored as kinetic energy and can be retrieved by slowing down the flywheel.